7,987 research outputs found

    Quintessence as a run-away dilaton

    Get PDF
    We consider a late-time cosmological model based on a recent proposal that the infinite-bare-coupling limit of superstring/M-theory exists and has good phenomenological properties, including a vanishing cosmological constant, and a massless, decoupled dilaton. As it runs away to +∞+ \infty, the dilaton can play the role of the quintessence field recently advocated to drive the late-time accelerated expansion of the Universe. If, as suggested by some string theory examples, appreciable deviations from General Relativity persist even today in the dark matter sector, the Universe may smoothly evolve from an initial "focusing" stage, lasting untill radiation--matter equality, to a "dragging" regime, which eventually gives rise to an accelerated expansion with frozen Ω(darkenergy)/Ω(darkmatter)\Omega(\rm{dark energy})/\Omega(\rm{dark matter}).Comment: 31 pages, latex, 5 figures included using epsfig. New references added and misprints corrected. To appear in Phys. Rev.

    Scalar-tensor theories, trace anomalies and the QCD-frame

    Full text link
    We consider the quantum effects of matter fields in scalar-tensor theories and clarify the role of trace anomaly when switching between conformally related `frames'. We exploit the property that the couplings between the scalar and the gauge fields are not frame-invariant in order to define a `QCD-frame', where the scalar is not coupled to the gluons. We show that this frame is a natural generalization of the `Jordan frame' in the case of non-metric theories and that it is particularly convenient for gravitational phenomenology: test bodies have trajectories that are as close as possible to geodesics with respect to such a metric and equivalence principle violations are directly proportional to the scalar coupling parameters written in this frame. We show how RG flow and decoupling work in metric and non-metric theories. RG-running commutes with the operation of switching between frames at different scales. When only matter loops are considered, our analysis confirms that metricity is stable under radiative corrections and shows that approximate metricity is natural in a technical sense.Comment: 10 pages. Minor changes to the main text, appendix added. To appear on PR

    Heat wave propagation in a nonlinear chain

    Full text link
    We investigate the propagation of temperature perturbations in an array of coupled nonlinear oscillators at finite temperature. We evaluate the response function at equilibrium and show how the memory effects affect the diffusion properties. A comparison with nonequilibrium simulations reveals that the telegraph equation provides a reliable interpretative paradigm for describing quantitatively the propagation of a heat pulse at the macroscopic level. The results could be of help in understanding and modeling energy transport in individual nanotubes.Comment: Revised version, 1 fig. adde

    Behaviour of traditional Portuguese timber roof structures

    Get PDF
    The aim of this paper is to present the results of a structural analysis of common trusses traditionally used in roof construction in Portugal. The study includes the results of a preliminary survey intending to assess the geometry, materials and on site pathologies, as well as a twodimensional linear elastic static and dynamic analysis. The trusses behaviour under symmetric and non-symmetric loads, the king post/tie-beam connection, the stiffness of the joints and the incorrect positioning of the purlins, were some of the structural aspects that have been investigated

    Modelling of timber joints in traditional structures

    Get PDF
    Original unstrengthened timber connections and the effects of different strengthening techniques have been evaluated experimentally with tests on full-scale birdsmouth joints. Experimental results show that structural response of traditional timber connections under cyclic loading cannot be represented by common constraint models, like perfect hinges or rigid joints, but should be using semi-rigid and friction based models. A research program has investigated the behaviour of old timber joints and examined strengthening criteria. The main parameters affecting the mechanical behaviour of the connection have been singled out. A synthetic model of cyclic behaviour has been adapted on the basis of experimental results

    Experimental analysis of original and strengthened traditional timber connections

    Get PDF
    Tests on full-scale unstrengthened connections were performed under monotonic and cyclic loading. Attention has been principally focused on the birdsmouth joint, because of its common use in practice. Different strengthening solutions with metal elements have been evaluated

    Self-Ordered stationary states of driven quantum degenerate gases in optical resonators

    Full text link
    We study the role of quantum statistics in the self-ordering of ultracold bosons and fermions moving inside an optical resonator with transverse coherent pumping. For few particles we numerically compute the nonequilibrium dynamics of the density matrix towards the self-ordered stationary state of the coupled atom-cavity system. We include quantum fluctuations of the particles and the cavity field. These fluctuations in conjunction with cavity cooling determine the stationary distribution of the particles, which exhibits a transition from a homogeneous to a spatially ordered phase with the appearance of a superradiant scattering peak in the cavity output spectrum. At the same time the cavity field QQ-function changes from a single to a double peaked distribution. While the ordering threshold is generally lower for bosons, we confirm the recently predicted zero pump strength threshold for superradiant scattering for fermions when the cavity photon momentum coincides with twice the Fermi momentum.Comment: 8 pages, 6 figures (v2: added one reference

    A relativistic non-relativistic Goldstone theorem: gapped Goldstones at finite charge density

    Full text link
    We adapt the Goldstone theorem to study spontaneous symmetry breaking in relativistic theo- ries at finite charge density. It is customary to treat systems at finite density via non-relativistic Hamiltonians. Here we highlight the importance of the underlying relativistic dynamics. This leads to seemingly new results whenever the charge in question is spontaneously broken and does not commute with other broken charges. We find that that the latter interpolate gapped excitations. In contrast, all existing versions of the Goldstone theorem predict the existence of gapless modes. We derive exact non-perturbative expressions for their gaps, in terms of the chemical potential and of the symmetry algebra.Comment: 5 pages. v2: minor modifications, matches the PRL versio

    Path integral quantization of the relativistic Hopfield model

    Get PDF
    The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quantum matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path integral formalism. In particular we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.Comment: 16 page

    Instability of the superfluid flow as black-hole lasing effect

    Full text link
    We show that the instability leading to the decay of the one-dimensional superfluid flow through a penetrable barrier are due to the black-hole lasing effect. This dynamical instability is triggered by modes resonating in an effective cavity formed by two horizons enclosing the barrier. The location of the horizons is set by v(x)=c(x)v(x)=c(x), with v(x),c(x)v(x),c(x) being the local fluid velocity and sound speed, respectively. We compute the critical velocity analytically and show that it is univocally determined by the horizons configuration. In the limit of broad barriers, the continuous spectrum at the origin of the Hawking-like radiation and of the Landau energetic instability is recovered.Comment: 18 pages, 3 figure
    • 

    corecore